If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+40x+18=0
a = 8; b = 40; c = +18;
Δ = b2-4ac
Δ = 402-4·8·18
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-32}{2*8}=\frac{-72}{16} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+32}{2*8}=\frac{-8}{16} =-1/2 $
| 9x+13=8x+6 | | 14+3n=5n+6 | | 3n-8=79 | | 21/2r=10 | | 4x+7(-3x-10)=-49-3x | | -1/2s+6=23 | | 28+4x=78-1x | | -6t-7=113 | | 16=−d-12/14 | | -x-4x+10=20 | | x^2/3^1=-3 | | 16=−d-1214 | | 2x-10=10+2x | | 1/3c+5=-4 | | 2a^2-18a-140=0 | | -4x+7x-3=9 | | 10-2x=2x+10 | | 11x-3(3x-1)=x+1 | | 3/17=v/13 | | -5v-5=145 | | 1)4x+7=13 | | -0.8x+3=12 | | 9a^2-15a=0 | | 9a2-15a=0 | | 2(5y+3)-4(7y+1)=-88 | | -7p-6=228 | | +5=9+w/9 | | 9e+4=-5e+13e+14e | | (2x-3)/(4x+4)=0 | | -50t^2+40t+100=0 | | m^2-8m-26=7 | | (2x-3)=(4x+4) |